Q.P. (Cod	e: 19I	EC04()7									R 1	19	
Reg.	N	0:	ingel	r diti a	mint	mA.	Port of	<u> </u>	n O heil	guco	astric	dan bal	Timela esade		
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech II Year II Semester Regular Examinations July-2021 ELECTRONIC CIRCUIT ANALYSIS														
					(Elect	ronics	and (Comm	unicat	ion E	ngine	ering)			
Time:	3 h	ours											Max. Ma	irks: 60	2
1	(Answer all Five Units 5 x 12 = 60 Marks) UNIT-I 1 a Sketch the Hybrid-pi model and explain the significance of each and every														6M
	component in it. b Short circuit CE current gain of a transistor is 25 at a frequency of 2MHz. If $f_{\beta} = 200$ KHz, calculate (i) f_{T} (ii) h_{fe} (iii) Find Ai at frequency of 10MHz and 100MHz.													L3	6M
								(DR						
2	a	a Construct the block diagram of n-stage cascaded amplifier and analyze its various parameters.												L3	8M
	b Define Darlington Pair and list its applications.													L1	4M
3	a Explain the basic concept of Feedback in amplifier with suitable block diagram.														8M
	 b List the characteristics of negative feedback amplifiers. OR 													L1	4M
4	a An RC coupled amplifier has a mid-frequency gain of 200 and a frequency response from 100 Hz to 20 KHz. A negative feedback network with $\beta = 0.02$ is incorporated into the amplifier circuit. Estimate the new system performance.													L5	6M
	b Compare various types of feedback amplifiers. UNIT-III													L4	6M
5	a	Estab	lish tł	ne con	dition	for os	cillati	on wit	h suit	able d	iagrai	n.		L3	5M
	b	Const freque	truct H ency o	RC ph	ase shi illatior	ift osc 1s.	illator	using	BJT a	and de	educe	its exp	pression for	L4	7 M
								(DR						
6	a	Expla frequ	un w ency o	orking of osc	g of (illation	Crysta 1s.	l osc	illator	and	dedu	ce th	e exp	ression for	L4	8M
	b	In the oscill	c Colp ation	itts os is 10k	scillato Hz, Ca	or, C1 alcula	= 0.2 te the	uF and value	l C2 = of ind	• 0.02 uctor.	μF. I	f the fr	equency of	L3	4M

O.P. Code: 19EC0407

UNIT-IV

- a Discuss about Transformer coupled Class A Power Amplifier with diagram L3 **6M** 7 and determine its Maximum efficiency. **b** A Class B push pull amplifier drives a load of 18Ω , connected to the L3 **6M**
 - secondary of ideal transformer. The Vcc is 25V. If number of turns on primary is 150 and secondary is 50. Determine maximum power output, DC power input and efficiency.

OR

L2 a Explain the effect of cascading single tuned amplifiers on bandwidth. **6M** 8 L3 **b** With circuit diagram, describe the stagger tuning operation. Sketch **6M** necessary graph.

UNIT-V

- a What is a Monostable multivibrator? Explain its working with the help of L2 **7M** 9 waveforms. L4 **5M**
 - **b** Compare Astable and Monostable multivibrators.

OR

10 a Explain a triggering method for Bistable multivibrator. L2 **6M** L4 **b** Calculate the stable state currents and voltages for the bistable multivibrator **6M** having VCC = 12 V, VBB = -12 V, RC1 = RC2 = $2.2k\Omega$, R1=R2 = $15k\Omega$, $R3=R4 = 100k\Omega$, $C1 = C2 = 0.1\mu F$. Assume that a transistor having a

minimum hfe of 20 is used.

*** END ***